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Abstract

Botulinum neurotoxins (BoNTs) cause the disease botulism, which can be lethal if untreated. 

There are seven known serotypes of BoNT, A-G, defined by their response to antisera. Many 

serotypes are distinguished into differing subtypes based on amino acid sequence and 

immunogenic properties, and some subtypes are further differentiated into toxin variants. Toxin 

characterization is important as different types of BoNT can respond differently to medical 

countermeasures for botulism, and characterization of the toxin can aid in epidemiologic and 

forensic investigations. Proteomic techniques have been established to determine the serotype, 

subtype, or toxin variant of BoNT. These techniques involve digestion of the toxin into peptides, 

tandem mass spectrometric (MS/MS) analysis of the peptides, and database searching to identify 

the BoNT protein. These techniques demonstrate the capability to detect BoNT and its neurotoxin-

associated proteins, and differentiate the toxin from other toxins which are up to 99.9% identical 

in some cases. This differentiation can be accomplished from toxins present in a complex matrix 

such as stool, food, or bacterial cultures and no DNA is required.

Introduction

Botulism is a disease caused by intoxication with any one of the highly toxic proteins known 

as botulinum neurotoxins (BoNTs). BoNT are composed of a heavy chain, which binds to 

receptors on the neuron, and a light chain which is a protease. In vivo, the BoNT light chain 

cleaves proteins necessary for nerve signal transmission resulting in flaccid paralysis. 

Botulinum neurotoxins are currently classified into seven serotypes, labeled A-G. 

BoNT/A, /C, and /E cleave SNAP-25 (synaptosomal-associated protein) [1–6] whereas 

BoNT/B, /D, /F, and /G cleave synaptobrevin-2 (also known as VAMP-2) [7–12]. BoNT/C 

is unique in that it targets more than one protein; it is also known to cleave syntaxin [13]. 

BoNT is produced as a protein complex in conjunction with neurotoxin-associated proteins 

(NAPs).

The seven different serotypes of BoNT are defined by their ability to be neutralized by an 

antiserum produced using a specific BoNT type. Therefore, identification of the serotype of 

BoNT is important as each serotype is neutralized by a different antiserum. Nucleotide or 
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amino acid sequence variation within BoNTs in strains of a serotype has led to the 

designation of subtypes. Historically, subtypes have been defined by cultural/biochemical 

characteristics [14], functional differences [15], or differential binding of monoclonal 

antibodies (mAbs) [16–18]. Amino acid variation within a subtype can vary by as much as 

30%, in the case of BoNT/F1 and /F5 [19], although amino acid variance within a serotype 

is typically less than 10%. This variation could be due to a new strain (Clostridium 

organism) or toxin variant (neurotoxin protein), with some of the neurotoxins of some 

strains having as few as a single amino acid difference, or 0.08% difference.

Identification of the subtype of BoNT is important for several reasons. First, one definition 

of a subtype of BoNT indicates that different subtypes of toxin may have differential 

binding to monoclonal antibodies, and perhaps some polyclonal antibodies [15, 20]. This is 

important while researchers search for an alternative treatment to the currently used equine 

immunoglobulin approach to treat botulism. Various mAb are proposed as immunoglobulin 

treatments for botulism; however, if there is differential binding of these antibodies to 

different subtypes, care must be taken in choosing which antibodies to use as treatment, as 

the antibodies might not be effective at neutralizing all subtypes of BoNT within a serotype. 

Secondly, identification of the BoNT subtype could be important to epidemiologic and 

forensic investigations attempting to trace the origin of the toxin, its spread in a botulism 

incident, and commonality/differences in concurrent botulism outbreaks.

Subtype identification is typically accomplished through DNA sequencing of the toxin’s 

genes [21]. Other DNA analysis techniques such as pulsed field gel electrophoresis [22], 

randomly amplified polymorphic DNA analysis [23], amplified fragment-length 

polymorphism analysis [24], flaA variable-region sequencing [25], multilocus sequence 

typing [26], multiple locus variable-number tandem repeat analysis [27], and a comparative 

genomic hybridization microarray [28] have also been used to differentiate strains. All of 

these methods depend on the presence of bacterial DNA in the sample material. However, in 

some botulism cases, BoNT is present but the bacterium cannot be isolated or cultured. In 

such a situation, toxin subtype identification or strain characterization is difficult, but 

perhaps possible, using traditional DNA-based methods [27, 29] as samples can still contain 

small amounts of DNA. In cases that no DNA is found, then the DNA-based methods cannot 

be used for subtype identification. Therefore, an alternate method which does not rely upon 

the presence of DNA may be the only option for subtype/toxin variant identification. 

Additionally, proteomic techniques are very rapid and have been used to quickly answer 

critical questions in the required time frame of a botulism outbreak investigation. In this 

review, we detail proteomic methods which yield information on the amino acid sequence of 

the toxin in question and thus reveal its serotype or subtype/toxin variant.

Mass Spectral Identification of Botulinum Neurotoxin Serotype

The seven known serotypes of BoNT are 34–64% identical to each other at the amino acid 

sequence level [30]. Because these proteins contain hundreds of amino acid differences, it is 

possible to distinguish these serotypes from each other through analysis of their amino acid 

sequences. Mass spectrometry has become a popular technique for identification of the 

amino acid sequence of a protein in question, and in 2002, van Baar et al reported on their 
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mass spectral analysis of BoNT/A and /B [31]. In this work, they digested the BoNT/A 

and /B protein complexes with trypsin, resulting in a series of peptides. The peptides were 

analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to 

obtain a peptide mass fingerprinting (PMF) map, and in some selected cases, peptides were 

sequenced using MALDI with post-source decay (PSD). Peptides were also separated by 

liquid chromatography (LC) and then analyzed by electrospray ionization tandem mass 

spectrometry (ESI-MS/MS) on a quadrupole time-of-flight (QTOF) instrument. PMF data or 

MS/MS were then searched against the NCBI database containing BoNT protein sequences. 

Through this work, they reported a sequence coverage of greater than 35% for BoNT/A and 

25% for BoNT/B. These sequence coverages are sufficient to identify the protein as BoNT 

and to differentiate at the serotype level, as BoNT/A or /B.

In 2004, van Baar et al extended this work to encompass serotypes /C, /D, /E, and /F [32]. 

This work used the same analysis techniques as their previous report [29]. Through this 

work, they reported sequence coverages of 11% for BoNT/C, 49% for BoNT/D, 30% for 

BoNT/E, and 53% for BoNT/F. Because these proteins are 36% or more dissimilar, these 

sequence coverages were sufficient to identify the protein as BoNT and to differentiate the 

serotype of BoNT. It should be noted that there are other published, non-proteomic mass 

spectrometric methods which detect BoNT and differentiate at the serotype level [33, 34]. 

These methods detect and identify BoNT by detecting the specific enzymatic activity of the 

neurotoxin. Because each serotype of toxin has a different cleavage site on synaptobrevin-2 

or SNAP-25, mass spectrometric detection of the cleavage of synaptobrevin-2 or SNAP-25 

at that particular cleavage site will identify the presence of BoNT and differentiate the 

serotype. While these methods are good at detecting the presence of active BoNT and 

differentiating the serotype, such a method is inadequate at differentiating beyond the 

serotype levels as all BoNT subtypes within a serotype cleave synaptobrevin-2 or SNAP-25 

in the same location [35], with the exception of BoNT/F5 [7].

Mass Spectral Identification of Neurotoxin-Associated Proteins

BoNTs are produced by Clostridum botulinum, C. butyricum, C. baratii, and C. 

argentinense, and are produced as a protein complex also known as the progenitor toxin, 

consisting of the neurotoxin and neurotoxin-associated proteins (NAPs). The composition of 

the progenitor toxin can differ between serotypes. The role of these NAPs has not been 

completely deduced; however, it is likely that the NAPs serve to protect the neurotoxin from 

harsh conditions found in the stomach and digestive tract, including low pH and digestive 

enzymes [36]. Additionally, it has been proposed that these NAPs assist with translocation 

of the neurotoxin across the intestinal epithelium [37], and the NAPs may assist with the 

immunogenicity of BoNT/A [38]. Identification and characterization of the NAPs may also 

assist with BoNT serotype identification as these proteins differ between serotypes.

Mass spectral identification of the NAPs associated with BoNT/A-G was first reported in 

2005 [39]. In this work, the protein complexes of BoNT/A-G were digested with trypsin, 

and the resultant peptides were separated by LC and introduced into a QTOF for analysis in 

the MS and MS/MS modes. Using Mascot, a mass spectrometric software search engine, 

mass spectral data were searched against the NCBI database for protein identification. 

Kalb and Barr Page 3

Rev Anal Chem. Author manuscript; available in PMC 2015 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Through this work, the neurotoxins could be identified and differentiated from each other 

with sequence coverage of 18%, 23.5%, 33.3%, 18.6%, 36.5%, 21.9%, and 16.1% for 

BoNT/A-G respectively. These sequence coverages are similar to what was previously 

reported by van Baar [31, 32]. However, this work also reported for the first time, mass 

spectral identification of the NAPs, and reported that the NAPs varied between the 

serotypes.

BoNT/A was reported in a complex with nontoxic-nonhemagglutinin and hemagglutinin 

proteins; specifically, NTNH, HA-70, HA-33, HA-17, and flagellin, with sufficient 

sequence coverage to definitely identify those proteins [39]. BoNT/B was also reported in a 

complex with NTNH, HA-70, HA-33, HA-17 and flagellin, but in all cases except HA-70, 

those NAPs have different amino acid sequences, making it possible to distinguish 

serotypes. BoNT/C combines with NTNH, HA-70, HA-33, and HA-17; BoNT/D combines 

with NTNH, HA-70, HA-33, and flagellin; BoNT/E with NTNH, ORF-X1, and NBP; 

BoNT/F with NTNH only; and BoNT/G was reported in a complex with NTNH, HA-70, 

and HA-17. In all cases, the serotype of toxin complex could be differentiated based on at 

least one of the associated proteins due to the presence of NAPs with differing amino acid 

sequences [39].

Although sequence coverage of 10–50% is sufficient to differentiate BoNT serotypes, 

increased sequence coverage assures confident differentiation. In the work previously 

described in this section [31, 32, 39], a mixture of proteins was digested and analyzed. 

Analysis of protein mixtures can often result in decreased sequence coverage for any 

individual protein. In 2011, Moura et al published on the mass spectral identification of 

BoNT/C and BoNT/D complexes [40]. In this work, they separated the components of the 

progenitor complexes by gel and then digested each gel band containing an individual 

protein. Although the same proteins were identified compared to previous work [39], 

sequence coverage of most proteins reported increased even though lower amounts of toxin 

were used for this experiment [40]. Additionally, this work also utilized a label-free mass 

spectrometric quantitation method (MSE) to report that 31% of the BoNT/C complex 

consisted of the neurotoxin whereas only 22% of the BoNT/D complex consisted of the 

neurotoxin [40].

This work also reported on a 3 minute in-solution digestion of the BoNT/C and /D 

complexes [40]. Shortening of the digestion time from a traditional overnight digestion to a 

3 minute process allows for more rapid identification of the serotype of BoNT as the 

overnight digestion step is the longest step in the process. Many of these same procedures 

were used by Terilli et al in 2011, reporting on the proteomic analysis of BoNT/G. Sequence 

coverage were reported as 66% and above for BoNT/G, NTNH, HA-70, and HA-17[41], 

allowing for easy differentiation of the serotype of toxin complex. The label-free 

quantitation method (MSE) reported a molar ratio of BoNT:NTNH:HA-70:HA-17 as 

1:1:2:1, indicating that there are two molecules of NTNH and HA-70 for every one molecule 

of BoNT and HA-17.
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BoNT Serotype Detection in Complex Matrices

BoNTs are purified and sold for research purposes either in the purified neurotoxin form or 

in the purified progenitor complex form. Additionally, the toxin can be found in bacterial 

cultures, foods, and animal/human clinical samples such as serum and stool. These matrices 

contain many abundant proteins and in most cases, the level of toxin proteins is far below 

that of the level of matrix proteins. Therefore, it is of interest to be able to detect and 

differentiate the serotype of BoNT in the presence of a complex matrix.

Klaubert et al published in 2009 on a technique to identify BoNT/A, /B, /E, and /F (the four 

serotypes which are associated with human cases of botulism) in the presence of a bacterial 

culture [42]. Because one role of the NAPs is to protect the toxin from digestive conditions, 

the bacterial culture was exposed to pepsin in pH 2, and matrix proteins were digested 

whereas the toxin complex remained intact. Peptides were then separated from proteins, and 

the proteins alone were digested with trypsin and separated by 2D nano-LC using ion 

exchange chromatography coupled with reversed phase chromatography. The peptides were 

then analyzed by nano-ESI MS/MS with data searched against the NCBI database. Although 

sequence coverage was less than 10%, toxin directly from bacterial cultures of four 

serotypes could be identified and differentiated [42].

Another approach to identify BoNT in the presence of a complex matrix has been the use of 

immunoaffinity purification of the toxin from other proteins present in the matrix. Using 

antibodies to the toxin, the toxin has been isolated from food [43–45] or bacterial culture 

[44, 46]. Through this process, both BoNT/A [43–45] and BoNT/B [44, 46] were reported to 

be detected even in the presence of complex matrices. The sequence coverage on the 

neurotoxin using this process was reported as between 65 and 98%. These high sequence 

coverage ensured identification and differentiation of these toxins. Although these 

techniques report the use of serotype-specific antibodies for toxin extraction, it should be 

noted that an antibody has been reported to bind BoNT/A, /B, /E, and /F, the four serotypes 

associated with human botulism [47] and that this antibody could be used to isolate any 

BoNT associated with human cases from its complex matrix.

Differentiation of BoNT at the Subtype/Toxin Variant Level

Differentiation of BoNT at the subtype/toxin variant level can be important for forensic or 

epidemiological reasons. Although there are many methods available to detect BoNT and 

differentiate it at the serotype level, few methods exist to differentiate the toxin below the 

serotype level, and most of these methods rely upon the presence of DNA for that 

determination. The serotypes of BoNT are 34–64% identical at the amino acid level. 

Because amino acid identity increases at the subtype level (70–97.5%) and increases even 

further at the toxin variant level (greater than 97.5%), identification of as much of the amino 

acid composition of the toxin as possible enables differentiation of the neurotoxin below the 

serotype level.

The first example of mass spectrometric detection and differentiation of BoNT below the 

serotype level was in 2005 [43]. In this work, BoNT/A1 and /A2 were spiked into milk and 

extracted with antibodies to BoNT/A. Both toxins were identified as BoNT/A through their 
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enzymatic activity upon a peptide substrate, and were then digested with trypsin and 

analyzed by LC-MS/MS. Upon searching the data against the NCBI database, the toxins 

were identified as either BoNT/A1 or /A2 with sequence coverages of 65–70% [43]. In 

2010, differentiation of BoNT/B1 and /B4 from culture supernatants was reported following 

extraction of the toxin with immunoaffinity, digestion of the extracted toxin with trypsin, 

and MS/MS analysis by MALDI-TOF [44]. Similarly, differentiation of BoNT/B1–/B5 

extracted from culture supernatants was reported in 2012 [46]. Sequence coverages of 66–

77% enabled differentiation of these five different toxins at the subtype level despite 

similarities as high as 98% in the case of BoNT/B2 and /B3 [46].

In 2012, Wang et al reported on a new technique to improve sequence coverage of BoNT 

proteins [45]. This work consisted of separation of the protein complex components by 

SDS-PAGE followed by digestion of each gel band with multiple enzymes and sequential 

in-gel digestion. Peptides from the gel band containing the neurotoxin were then separated 

by LC and analyzed by MS/MS followed by database searching. This analysis yielded 

sequence coverage of 90% and greater for all serotypes of BoNT [45]. Furthermore, this 

technique was used to identify the toxin present in a toxin-contaminated carrot juice sample 

associated with a complex botulism outbreak. The toxin was first extracted from the carrot 

juice with monoclonal antibodies to BoNT/A prior to analysis with this technique. The 

sequence coverage of the toxin was 98.6%, allowing for a determination of the toxin as 

BoNT/A1 (GeneBank accession no. ABY56330) [45]. It is important to note that this high 

level of sequence coverage allowed for determination of the toxin variant in this case as 

there are two similar toxin variants which are 99.9% and 99.6% identical to the toxin variant 

identified in this sample.

All of these proteomic methods described above relied upon matching the mass spectral data 

to sequences of proteins within a database. Forcing the data to fit a protein in the database 

can lead to inaccurate identifications of proteins if the protein in question has not yet been 

discovered and sequenced. In 2012, a method was reported to identify novel subtypes or 

toxin variants of BoNT/B which have not yet been sequenced [46]. This method relied upon 

the creation of an amino acid substitution database in which each individual amino acid 

within the sequence of BoNT/B1 was mutated to the other 19 possibilities. The MS/MS data 

were then searched against this database of possible mutations for a match to a possible 

mutation. This technique was used to analyze toxin extracted from a culture supernatant of 

BoNT/B via immunoaffinity purification and resulted in the identification of 5 novel amino 

acid differences and the identification of a new subtype of BoNT/B, BoNT/B7 [46]. DNA 

sequencing confirmed the mass spectrometry results, and when the correct amino acid 

sequence was added to the database, sequence coverage of the toxin was 68% [46].

Conclusions and Future Directions

Mass spectral analysis of botulinum neurotoxins allows for identification of the toxin at the 

serotype level as well as subtype or toxin variant level provided that the sequence coverage 

of the toxin is sufficient. These analyses can be performed by ESI or MALDI mass 

spectrometers and can encompass identification of the neurotoxin-associated proteins in 

addition to the neurotoxin. BoNTs can be identified and differentiated even in the presence 
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of a complex matrix such as food or bacterial culture, and it is now possible for de novo 

identification of novel BoNTs through mass spectrometric techniques. All of this work can 

be accomplished in the absence of DNA, and is summarized in Table 1.

Identification and differentiation of botulinum neurotoxins is a growing field, and there are 

many potential new directions. One possibility includes detection of the toxin directly from 

clinical samples, particularly stool which is the dominant diagnostic matrix for infant 

botulism. Although there are mass spectrometric methods which detect the presence of 

BoNT in stool [48], there is no published work describing the proteomics of BoNT present 

in a stool sample. Obtaining amino acid sequence on BoNT through mass spectrometry 

typically requires ng levels of toxin, and often, clinical samples contain pg or lower levels of 

toxin. Therefore, toxin is not often present in clinical samples at levels adequate for subtype 

or toxin variant differentiation, and methods which could make these determinations in the 

presence of as little as 10 pg (67 attomole) of toxin could play an important role in timely 

epidemiologic or forensic investigations.

Increased sequence coverage would allow for more confident differentiation of the subtype 

or toxin variant and would also assist in epidemiologic or forensic investigations. It is 

possible that additional amino acid sequence information and hence higher sequence 

coverage could be obtained through alternate mass spectrometric fragmentation techniques 

such as electron-transfer dissociation (ETD) or electron-capture dissociation (ECD) or 

perhaps a combination of those techniques, as both techniques are reported to yield 

increased fragmentation information on larger peptides [49, 50]. A decrease in the time 

needed to make these analyses would also be an important improvement. Other possibilities 

for improvement exist in this growing field to combat the deadly disease of botulism.

The opinions, interpretations, conclusions, and recommendations are those of the authors 

and are not necessarily endorsed by the Centers of Disease Control and Prevention.

Abbreviations used

BoNT Botulinum neurotoxin

SNAP synaptosomal-associated protein

NAP neurotoxin-associated protein

mAb monoclonal antibodies

MALDI matrix-assissted laser desorption/ionization

PSD post-source decay

MS/MS tandem mass spectrometry

PMF peptide mass fingerprinting

HA hemagglutinin

NTNH nontoxic-nonhemagglutinin

ESI electrospray ionization
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LC liquid chromatography

QTOF quadrupole time-of-flight

ETD electron-transfer dissociation

ECD electron-capture dissociation

References

1. Binz T, Blasi J, Yamasaki S, Baumeister A, Link E, Sudhof TC, Jahn R, Niemann H. Proteolysis of 
SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem. 1994; 269(3):1617–1620. 
[PubMed: 8294407] 

2. Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, De Camilli P, Sudhof TC, Niemann H, Jahn R. 
Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 1993; 
365(6442):160–163. [PubMed: 8103915] 

3. Foran P, Lawrence GW, Shone CC, Foster KA, Dolly JO. Botulinum neurotoxin C1 cleaves both 
syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of 
catecholamine release. Biochemistry. 1996; 35(8):2630–2636. [PubMed: 8611567] 

4. Schiavo G, Rossetto O, Catsicas S, Polverino de Laureto P, DasGupta BR, Benfenati F, Montecucco 
C. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol 
Chem. 1993; 268(32):23784–23787. [PubMed: 8226912] 

5. Schiavo G, Santucci A, Dasgupta BR, Mehta PP, Jontes J, Benfenati F, Wilson MC, Montecucco C. 
Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide 
bonds. FEBS letters. 1993; 335(1):99–103. [PubMed: 8243676] 

6. Williamson LC, Halpern JL, Montecucco C, Brown JE, Neale EA. Clostridial neurotoxins and 
substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated 
protein of 25 kDa. J Biol Chem. 1996; 271(13):7694–7699. [PubMed: 8631808] 

7. Kalb SR, Baudys J, Webb RP, Wright P, Smith TJ, Smith LA, Fernandez R, Raphael BH, Maslanka 
SE, Pirkle JL. Discovery of a novel enzymatic cleavage site for botulinum neurotoxin F5. FEBS 
letters. 2012; 586(2):109–115. [PubMed: 22172278] 

8. Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco 
C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of 
synaptobrevin. Nature. 1992; 359(6398):832–835. [PubMed: 1331807] 

9. Schiavo G, Malizio C, Trimble WS, Polverino de Laureto P, Milan G, Sugiyama H, Johnson EA, 
Montecucco C. Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide 
bond. J Biol Chem. 1994; 269(32):20213–20216. [PubMed: 8051110] 

10. Schiavo G, Shone CC, Rossetto O, Alexander FC, Montecucco C. Botulinum neurotoxin serotype 
F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem. 1993; 268(16):11516–
11519. [PubMed: 8505288] 

11. Yamasaki S, Baumeister A, Binz T, Blasi J, Link E, Cornille F, Roques B, Fykse EM, Sudhof TC, 
Jahn R, et al. Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal 
neurotoxins and tetanus toxin. J Biol Chem. 1994; 269(17):12764–12772. [PubMed: 8175689] 

12. Yamasaki S, Binz T, Hayashi T, Szabo E, Yamasaki N, Eklund M, Jahn R, Niemann H. Botulinum 
neurotoxin type G proteolyses the Ala81–Ala82 bond of rat synaptobrevin 2. Biochemical and 
biophysical research communications. 1994; 200(2):829–835. [PubMed: 7910017] 

13. Schiavo G, Shone CC, Bennett MK, Scheller RH, Montecucco C. Botulinum neurotoxin type C 
cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem. 
1995; 270(18):10566–10570. [PubMed: 7737992] 

14. Wagner E, Meyer KF, Dozier CC. Studies on the Metabolism of B. Botulinus in Various Media. 
Xxvi. Journal of bacteriology. 1925; 10(4):321–412. [PubMed: 16559144] 

15. Kozaki S, Kamata Y, Nishiki T, Kakinuma H, Maruyama H, Takahashi H, Karasawa T, 
Yamakawa K, Nakamura S. Characterization of Clostridium botulinum type B neurotoxin 

Kalb and Barr Page 8

Rev Anal Chem. Author manuscript; available in PMC 2015 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with infant botulism in japan. Infection and immunity. 1998; 66(10):4811–4816. 
[PubMed: 9746583] 

16. Gibson AM, Modi NK, Roberts TA, Hambleton P, Melling J. Evaluation of a monoclonal 
antibody-based immunoassay for detecting type B Clostridium botulinum toxin produced in pure 
culture and an inoculated model cured meat system. The Journal of applied bacteriology. 1988; 
64(4):285–291. [PubMed: 3049499] 

17. Kozaki S, Nakaue S, Kamata Y. Immunological characterization of the neurotoxin produced by 
Clostridium botulinum type A associated with infant botulism in Japan. Microbiology and 
immunology. 1995; 39(10):767–774. [PubMed: 8577267] 

18. Smith TJ, Lou J, Geren IN, Forsyth CM, Tsai R, Laporte SL, Tepp WH, Bradshaw M, Johnson 
EA, Smith LA, et al. Sequence variation within botulinum neurotoxin serotypes impacts antibody 
binding and neutralization. Infection and immunity. 2005; 73(9):5450–5457. [PubMed: 16113261] 

19. Raphael BH, Choudoir MJ, Luquez C, Fernandez R, Maslanka SE. Sequence diversity of genes 
encoding botulinum neurotoxin type F. Appl Environ Microbiol. 2010; 76(14):4805–4812. 
[PubMed: 20511432] 

20. Umeda K, Seto Y, Kohda T, Mukamoto M, Kozaki S. Genetic characterization of Clostridium 
botulinum associated with type B infant botulism in Japan. J Clin Microbiol. 2009; 47(9):2720–
2728. [PubMed: 19571018] 

21. Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, 
Smith LA, Okinaka RT, et al. Genetic diversity among Botulinum Neurotoxin-producing 
clostridial strains. Journal of bacteriology. 2007; 189(3):818–832. [PubMed: 17114256] 

22. Lin WJ, Johnson EA. Genome analysis of Clostridium botulinum type A by pulsed-field gel 
electrophoresis. Appl Environ Microbiol. 1995; 61(12):4441–4447. [PubMed: 8534108] 

23. Hielm S, Bjorkroth J, Hyytia E, Korkeala H. Ribotyping as an identification tool for Clostridium 
botulinum strains causing human botulism. Int J Food Microbiol. 1999; 47(1–2):121–131. 
[PubMed: 10357280] 

24. Keto-Timonen R, Nevas M, Korkeala H. Efficient DNA fingerprinting of Clostridium botulinum 
types A, B, E, and F by amplified fragment length polymorphism analysis. Appl Environ 
Microbiol. 2005; 71(3):1148–1154. [PubMed: 15746312] 

25. Paul CJ, Twine SM, Tam KJ, Mullen JA, Kelly JF, Austin JW, Logan SM. Flagellin diversity in 
Clostridium botulinum groups I and II: a new strategy for strain identification. Appl Environ 
Microbiol. 2007; 73(9):2963–2975. [PubMed: 17351097] 

26. Jacobson MJ, Lin G, Whittam TS, Johnson EA. Phylogenetic analysis of Clostridium botulinum 
type A by multi-locus sequence typing. Microbiology. 2008; 154(Pt 8):2408–2415. [PubMed: 
18667573] 

27. Macdonald TE, Helma CH, Ticknor LO, Jackson PJ, Okinaka RT, Smith LA, Smith TJ, Hill KK. 
Differentiation of Clostridium botulinum serotype A strains by multiple-locus variable-number 
tandem-repeat analysis. Appl Environ Microbiol. 2008; 74(3):875–882. [PubMed: 18083878] 

28. Raphael BH, Joseph LA, McCroskey LM, Luquez C, Maslanka SE. Detection and differentiation 
of Clostridium botulinum type A strains using a focused DNA microarray. Molecular and cellular 
probes. 24(3):146–153. [PubMed: 20056143] 

29. De Medici D, Anniballi F, Wyatt GM, Lindstrom M, Messelhausser U, Aldus CF, Delibato E, 
Korkeala H, Peck MW, Fenicia L. Multiplex PCR for detection of botulinum neurotoxin-
producing clostridia in clinical, food, and environmental samples. Appl Environ Microbiol. 2009; 
75(20):6457–6461. [PubMed: 19684163] 

30. Hill KK, Smith TJ. Genetic diversity Within Clostridium botulinum serotypes, botulinum 
neurotoxin gene clusters and toxin subtypes. Current topics in microbiology and immunology. 
2013; 364:1–20. [PubMed: 23239346] 

31. van Baar BL, Hulst AG, de Jong AL, Wils ER. Characterisation of botulinum toxins type A and B, 
by matrix-assisted laser desorption ionisation and electrospray mass spectrometry. Journal of 
chromatography. 2002; 970(1–2):95–115. [PubMed: 12350104] 

32. van Baar BL, Hulst AG, de Jong AL, Wils ER. Characterisation of botulinum toxins type C, D, E, 
and F by matrix-assisted laser desorption ionisation and electrospray mass spectrometry. Journal 
of chromatography. 2004; 1035(1):97–114. [PubMed: 15117079] 

Kalb and Barr Page 9

Rev Anal Chem. Author manuscript; available in PMC 2015 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



33. Barr JR, Moura H, Boyer AE, Woolfitt AR, Kalb SR, Pavlopoulos A, McWilliams LG, Schmidt 
JG, Martinez RA, Ashley DL. Botulinum neurotoxin detection and differentiation by mass 
spectrometry. Emerging infectious diseases. 2005; 11(10):1578–1583. [PubMed: 16318699] 

34. Boyer AE, Moura H, Woolfitt AR, Kalb SR, McWilliams LG, Pavlopoulos A, Schmidt JG, Ashley 
DL, Barr JR. From the mouse to the mass spectrometer: detection and differentiation of the 
endoproteinase activities of botulinum neurotoxins A–G by mass spectrometry. Anal Chem. 2005; 
77(13):3916–3924. [PubMed: 15987092] 

35. Kalb SR, Smith TJ, Moura H, Hill K, Lou J, Geren IN, Garcia-Rodriguez C, Marks JD, Smith LA, 
Pirkle JL, et al. The use of Endopep-MS to detect multiple subtypes of botulinum neurotoxins A, 
B, E, and F. International Journal of Mass Spectrometry. 2008; 278(2–3):101–108.

36. Sugii S, Ohishi I, Sakaguchi G. Correlation between oral toxicity and in vitro stability of 
Clostridium botulinum type A and B toxins of different molecular sizes. Infection and immunity. 
1977; 16(3):910–914. [PubMed: 19355] 

37. Fujinaga Y, Inoue K, Nomura T, Sasaki J, Marvaud JC, Popoff MR, Kozaki S, Oguma K. 
Identification and characterization of functional subunits of Clostridium botulinum type A 
progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS letters. 2000; 
467(2–3):179–183. [PubMed: 10675534] 

38. Lee JC, Yokota K, Arimitsu H, Hwang HJ, Sakaguchi Y, Cui J, Takeshi K, Watanabe T, Ohyama 
T, Oguma K. Production of anti-neurotoxin antibody is enhanced by two subcomponents, HA1 
and HA3b, of Clostridium botulinum type B 16S toxin-haemagglutinin. Microbiology. 2005; 
151(Pt 11):3739–3747. [PubMed: 16272395] 

39. Hines HB, Lebeda F, Hale M, Brueggemann EE. Characterization of botulinum progenitor toxins 
by mass spectrometry. Appl Environ Microbiol. 2005; 71(8):4478–4486. [PubMed: 16085839] 

40. Moura H, Terilli RR, Woolfitt AR, Gallegos-Candela M, McWilliams LG, Solano MI, Pirkle JL, 
Barr JR. Studies on botulinum neurotoxins type/C1 and mosaic/DC using Endopep-MS and 
proteomics. FEMS Immunol Med Microbiol. 2011; 61(3):288–300. [PubMed: 21205003] 

41. Terilli RR, Moura H, Woolfitt AR, Rees J, Schieltz DM, Barr JR. A historical and proteomic 
analysis of botulinum neurotoxin type/G. BMC microbiology. 2011; 11:232. [PubMed: 22008244] 

42. Klaubert B, Vujtovic-Ockenga N, Wermter R, Schad K, von Meyer L. Determination of botulinum 
toxins after peptic sample pre-treatment by multidimensional nanoscale liquid chromatography 
and nano-electrospray ion-trap mass spectrometry. Journal of chromatography B, Analytical 
technologies in the biomedical and life sciences. 2009; 877(11–12):1084–1092. [PubMed: 
19297256] 

43. Kalb SR, Goodnough MC, Malizio CJ, Pirkle JL, Barr JR. Detection of botulinum neurotoxin A in 
a spiked milk sample with subtype identification through toxin proteomics. Anal Chem. 2005; 
77(19):6140–6146. [PubMed: 16194071] 

44. Kull S, Pauly D, Stormann B, Kirchner S, Stammler M, Dorner MB, Lasch P, Naumann D, Dorner 
BG. Multiplex detection of microbial and plant toxins by immunoaffinity enrichment and matrix-
assisted laser desorption/ionization mass spectrometry. Anal Chem. 2010; 82(7):2916–2924. 
[PubMed: 20199054] 

45. Wang D, Baudys J, Rees J, Marshall KM, Kalb SR, Parks BA, Nowaczyk L 2nd, Pirkle JL, Barr 
JR. Subtyping botulinum neurotoxins by sequential multiple endoproteases in-gel digestion 
coupled with mass spectrometry. Anal Chem. 2012; 84(11):4652–4658. [PubMed: 22577857] 

46. Kalb SR, Baudys J, Rees JC, Smith TJ, Smith LA, Helma CH, Hill K, Kull S, Kirchner S, Dorner 
MB, et al. De novo subtype and strain identification of botulinum neurotoxin type B through toxin 
proteomics. Analytical and bioanalytical chemistry. 2012; 403(1):215–226. [PubMed: 22395449] 

47. Kalb SR, Garcia-Rodriguez C, Lou J, Baudys J, Smith TJ, Marks JD, Smith LA, Pirkle JL, Barr 
JR. Extraction of BoNT/A, /B, /E, and /F with a single, high affinity monoclonal antibody for 
detection of botulinum neurotoxin by Endopep-MS. PLoS One. 2010; 5(8):e12237. [PubMed: 
20808925] 

48. Kalb SR, Moura H, Boyer AE, McWilliams LG, Pirkle JL, Barr JR. The use of Endopep-MS for 
the detection of botulinum toxins A, B, E, and F in serum and stool samples. Analytical 
biochemistry. 2006; 351(1):84–92. [PubMed: 16500606] 

Kalb and Barr Page 10

Rev Anal Chem. Author manuscript; available in PMC 2015 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



49. Cooper HJ, Hakansson K, Marshall AG. The Role of Electron Capture Dissociation in 
Biomolecular Analysis. Mass Spectrometry Reviews. 2004; 24(2):201–222. [PubMed: 15389856] 

50. Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JEP, Shabanowitz J, Hunt DF. The utility of 
ETD mass spectrometry in proteomic analysis. Bba-Proteins Proteom. 2006; 1764(12):1811–1822.

Kalb and Barr Page 11

Rev Anal Chem. Author manuscript; available in PMC 2015 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kalb and Barr Page 12

Table 1

Summary of pertinent information from references cited in this review.

Reference Method used Sequence coverage on toxin(s) Complex matrix? NAPs?

2002 van Baar MALDI-PSD/ LC-ESI-MS/MS 35% BoNT/A; 25% BoNT/B No No

2004 van Baar MALDI-PSD/ LC-ESI-MS/MS 11% BoNT/C; 49% BoNT/D, 30% BoNT/E, 53% 
BoNT/F

No No

2005 Hines LC-ESI-MS/MS 18% BoNT/A; 23.5% BoNT/B; 33.3% BoNT/C; 
18.6% BoNT/D; 36.5% BoNT/E; 21.9% BoNT/F; 
16.1% BoNT/G

No Yes

2011 Moura LC-ESI-MS/MS 44% BoNT/C; 18.4% BoNT/DC No Yes

2011 Terilli LC-ESI-MS/MS 66% BoNT/G No Yes

2009 Klaubert LC-ESI-MS/MS 6% BoNT/B, not mentioned for BoNT/A, /E, or /F Culture supernatant Yes

2005 Kalb LC-ESI-MS/MS 65–70% BoNT/A1 and /A2 Milk No

2010 Kull MALDI-MS Not mentioned Milk, apple juice, orange 
juice, ham

No

2012 Wang Gel then LC-ESI-MS/MS 99% BoNT/A; 95% BoNT/B; 90% BoNT/C; 96% 
BoNT/D; 92% BoNT/E; 97% BoNT/F; 91% 
BoNT/G

Carrot juice No

2012 Kalb LC-ESI-MS/MS 76% BoNT/B1; 76% BoNT/B2; 66% BoNT/B3; 
75% BoNT/B4; 74% BoNT/B5

Culture supernatant No
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